WanRaptor Scripting APl Documentation
For Version 2.0

East Coast Datacom

August 6, 2019

Contents

Contents

1 Introduction

11

12
1.3
1.4

ENdpoints e
Design Principles e
Data StruCtUres e e e
Response STructure e

2 Authentication

21
22

POST /api/login e
POST /oauth/access_token e e e e

3 Emulation Profiles

31

32
33
3.4
35
3.6
3.7
3.8
39

GET /api/emulations/ e
GET /api/emulations/{id} e e e
POST /api/emulations/ e e e e e
PUT Zapi/emulations/{id} e e
DELETE /api/emulations/{id} e
DELETE /api/emulations/ 0 0 e
POST /api/emulations/{id}/start e
POST /api/emulations/{id}/stop e
Data StrUCTUresS e
391 EmulationProfile e
3.9.2 ScheduleSettings e
393 DateTime e
3904 Delay ...
395 LossRate
39.6 Bandwidth e
397 Reordering
39.8 Example EmulationProfile

4 Emulation Logs

4.
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
410

GET 7api/logs . . o o o e e
GET /api/logs/active e
GET /api/logs/{id} e
DELETE /api/logs/{id} e e e
DELETE /api/logs/ e e
GET /api/logs/{id}/statistics e
GET /api/logs/{id}/statistics/last e
POST /api/logs/{id}/reset e
GET /api/logs/{id}/export i
Data struCtUIeS
4000 LOZ . o o
470.2 Statistics e
4003 StatisticsStructure e

5 Scripting Example

—_ e)

(CelNeNo o B BENERN o) o) IO) U IO MO U, U IO RO) | AW W

Chapter1

Introduction

This manual contains the documentation for the REST API of WanRaptor, which is the same used by
the WanRaptor Web Interface. Purpose of this documentation is to allow scripting of operations, as to
make the WanRaptor more flexible to customer needs.

1.1 Endpoints

The REST endpoints available at the same management address that is used to access the Web Inter-
face.

In this document, we will express the endpoints relatively to the management address, e.g. if manage-
ment address is 192.168.1.120 and the endpoint path is /api/auth/loginthen the HTTP request must
be sent to http://192.168.1.120/api/auth/login Following REST best practices, endpoints are accessed
through appropriate HTTP verbs (GET, POST, PUT, DELETE). Thus, in this document endpoints are presented
as verb + path, e.g. POST /apilogin.

1.2 Design Principles
The REST API is designed according the following principles:
- URLs start with /api/ to distinguish from Web Interface URLs

- Each URL locates a resource. As such,

- IDs are specified as part of the path (e.g. /api/resource/{resource_id}).
— GET parameters (e.g. /api/resource?key=value) are not used.
- Call-specific parameters are specified through the request body.

1.3 Data Structures

The format of choice for data, in both requests and responses, is JISON. To explicit this, we suggest to
set HTTP headers accordingly.

- In a request with a data payload, set Content-Type to application/json.
- As any request expects data within the response, set Accept to application/json.
In this document, we will present the JSON data structures via their schema, where properties are

presented as "<name>”: <type>. Anoptionalfieldisindicated by a ?followingthe name, i.e. "<name>”?: <type>.

1.4 Response Structure

To generalize the management of errors, all responses have a data payload to indicate the presence or
absence of an error. This system does not replace the HTTP code system, instead it enhances it with
application specific errors.

2 Chapter 1. Introduction

An exception to this are the Authentication endpoints, which in case of success do not follow this
schema.

Schema

{
“error” : String,
”description”: String,
"content”: String”

}

Description of Fields

- error
Error type. If none, the requests was successful. If validation, the input provided was not valid.

- description
Human readable description of the error, if present.

- content
If error is none, it contains the response data.
Otherwise, it will describe validation errors.
In all cases, it can be empty: {3.

In the rest of the document, we will refer to successful responses with empty content as NoError.
For successful responses with non-empty content, we will refer to it directly as the response content.

Examples

An example of a validation error is shown in the code below. The error is related to validation of an
emulation profile form. The error signals that the constant set for the delay on portl is less than the
minimum supported by that port, which is given by hardware limitations.

{
“error” : ”validation”,
"description” : ”Input is invalid”,
"content” : {
”delays.portl.constant” : [”min.notmet”]
3

Chapter 2

Authentication

For most of the API, the request must provide authentication information to authorize the execution
of the request. The system used is based on OAuth 2.0 specification.

This information is given in form of an access_token and a token_type, which must be provided via the
Authorization header of the HTTP request. E.g.: Authorization: <token_type> <access_token>

2.1 POST /api/login

Used to authenticate and obtain the related tokens, needed for subsequent requests.
Note that these endpoints do not follow the same schema as the rest of the API. In case of success,
error and description fields are not included. The response will have only the fields listed below.

Payload
{
”username”: String,
"password”: String
}
Response
{
”username”: String,

"roles”: String[],
”token_type”: String,

”access_token”: String,

”expires_in”: Integer,

"refresh_token”: String
}

< username

The authenticated username.

- roles
List of roles assigned to the user. E.g. [”’ROLE_ADMIN”]

- token_type
Token type, which usually is set to ”Bearer”.

4 Chapter 2. Authentication

- access_token

Token to be attached to each following request as proof of authentication, using the Authorization
header of the HTTP request.

WARNING: If the header is not added to the request, or if the token is added incorrectly, requests
will fail with error 401.

- expires_in
Expiration time of the access_token, measured in seconds. Usually set to 3600, i.e. 1 hour.
WARNING: Using an expired access_token for requests will fail with error 401.

- refresh_token
Used to refresh the access_token without repeating the login, with POST /oauth/access_token.

2.2 POST /oauth/access_token

Used to refresh an access_token before its expiration, and avoid a re-login.

Following the OAuth 2.0 specification, requests to this protocol must use the x-www-form-urlencoded
encoding instead of JSON, i.e. the request header will contain

Content-Type: application/x-www-form-urlencoded

Payload

The body of the request will, consequently, be in the following format:

grant_type=refresh_token&refresh_token=<refresh_token>

refresh_token, to the right of the second equal sign, must be set with the token obtained from
POST /api/login.

Response

Follows the same response schema as POST /api/login.

Chapter 3

Emulation Profiles

3.1 GET /api/emulations/

Obtains the list of IDs of all emulations profiles, as an array of ID values.
Requires no argument.

3.2 GET /api/emulations/{id}

Obtains the emulation profile with the given ID, as a single EmulationProfile object.
Requires no argument.

3.3 POST /api/emulations/

Creates a new emulation profile.
The payload must contain a single EmulationProfile object.
If the emulation was correctly created, the response contains the assigned id as follows

”id”: Integer

3.4 PUT /api/emulations/{id}

Edits the emulation with the given id.
The payload must contain a single EmulationProfile object with the updated values.
If the emulation was correctly updated, the response is a NoError.

3.5 DELETE /api/emulations/{id}

Delete the emulation with the given id.
If the emulation was correctly deleted, the response is a NoError.

3.6 DELETE /api/emulations/

Deletes all emulations currently present.

3.7 POST /api/emulations/{id}/start

Starts the emulation with the given id.
If the emulation was correctly started, the response is a NoError.

5

6 Chapter 3. Emulation Profiles

3.8 POST /api/emulations/{id}/stop

Stops the emulation with the given id.
If the emulation was correctly stopped, the response is a NoError.

3.9 Data structures

3.9.1 EmulationProfile

Schema

”id”?: Integer,

"name”: String,

”operationMode”: String,

"portl1”: String,

"port2”: String,

”logEnabled”: Boolean,

”jumboFrames”: Boolean,

”runningState”?: String,

”scheduled”: Boolean,

”scheduleSettings”?: ScheduleSettings,

7delays”: {
"portl1”: Delay,
"port2”: Delay

1,

”lossRateSettings”: {
"portl1”: LossRate,
"port2”: LossRate

1,

"bandwidthSettings”: {
"portl1”: Bandwidth,
"port2”: Bandwidth

1,

"reorderingSettings”: {
"portl1”: Reordering,
"port2”: Reordering

Description of fields
- id
Unique id of the emulation profile.
This field must not be present in POST /api/emulations/ and PUT /api/emulations/{id} requests.

* Name
Unigue name of the emulation profile.

- operationMode
Can be one of ”"bridge” or "route”.

- portl
Name of the first interface as seen in the Web Interface.

+ port2
Name of the second interface as seen in the Web Interface.

3.9. Data structures 7

- logEnabled
If true, a log will be created.

+ jumboFrames
If true, jumbo frames support will be enabled.

« runningState
Running state of the emulation. Can be one of running or stopped.
Thisfield isserver-generated, it must not be presentin POST /api/emulations/andPUT /api/emulations/{id}
requests.

- scheduled
If true, the emulation profile is scheduled for automatic start.

- scheduleSettings
Optional ScheduleSettings field, must be present only if scheduled is true.

- delays
Delay settings for both ports.

- lossRateSettings
LossRate settings for both ports.

+ bandwidthSettings
Bandwidth settings for both ports.

- reorderingSettings
Reordering settings for both ports.

3.9.2 ScheduleSettings

Schema
{
”startDateTime”: DateTime,
”endDateTime”?: DateTime
3

Description of fields

- startDateTime
DateTime of scheduled start.

- endDateTime
DateTime of scheduled end. Optional field.

3.9.3 DateTime

Schema

"date”: dd/MM/yyyy,
Ptime”: HH:mm

8 Chapter 3. Emulation Profiles

Description of fields

- date
Date expressed in day/month/year format.

- time
Time expressed in hour:minute format.

3.9.4 Delay

Schema

{
”type”: String,
”constant”: Decimal,
"minimum”: Decimal,
"maximum”: Decimal,
”average”: Decimal

3

Description of fields

Aim of the data structure as a whole is to represent the probability distribution of the delay. Mean-
ing of the fields depend on the value of type, as described below. All numeric fields are intended in
milliseconds. For a given type, only cited values are considered, others are ignored.

- constant
The delay is constant and set to the value of constant.

- uniform
The delay is uniformly distributed between minimum and maximum.

- exponential
The delay is exponential distributed with base value minimum and constant average.

- inter_packet
Packets are delayed by constant and, additionally, the delay between two consecutive packets is
uniformly distributed between minimum and maximum.

3.9.5 LossRate

Schema
{
”type”: String,
"rate”: Decimal
3

Description of fields

- type
Can be either plr or ber, which stand respectively for Packet Loss Rate and Bit Error Rate.

- rate
Error rate. If type is set to plr, it is between 0 and 100. If type is set to ber, it is between O and 1.

3.9. Data structures

3.9.6 Bandwidth

Schema
{
"bandwidth”: Decimal
“unit”: String
3

Description of fields

- bandwidth
Bandwidth value.

- unit
Unit of measure for the bandwidth. Can be one of gbps, mbps or kbps.

3.9.7 Reordering

Schema
{
”delay”: Decimal
"probability”: Decimal
3

Description of fields

- delay
Delay value in milliseconds.

- probability
Probability of reordering, from O to 100.

3.9.8 Example EmulationProfile

10

”7id”: 6,
"name”: ”profile_name 7,
"operationMode”: ”bridge”,
"portl1”: ”enp3s0fo”,
"port2”: ”enp3s0f1”,
”logEnabled”: true,
”jumboFrames”: false,
"runningState”: ”stopped”,
”scheduled”: false,
7delays”: {

"portl1”: {

”type”: ”constant”,

”constant”: 29.0

3,
"port2”: {
”type”: ”exponential”,
"minimum”: 1.0,
”average”: 5.0
3
1,
”lossRateSettings”: {
"portl1”: {
"rate”: 26.0,
"type”: "plr”
3,
"port2”: {
"rate”: 1.0E-5,
"type”: ”ber”
3
1,
"bandwidthSettings”: {
"portl1”: {
"pbandwidth”: 1.0,
“unit”: ”gbps”
3,
"port2”: {
"bandwidth”: 5.0,
“unit”: ”mbps”
}
1,
"reorderingSettings”: {
"portl1”: {
”delay”: 17.0,
"probability”: 10.
}7
"port2”: {
”delay”: 0.0,
"probability”: 0.0
}

Chapter 3. Emulation Profiles

Chapter 4

Emulation Logs

4.1 GET /api/logs

Obtains the IDs of logs, as an array of log IDs.

4.2 GET /api/logs/active

Obtains the IDs of logs currently active, as an array of log IDs.

4.3 GET /api/logs/{id}

Obtains the log with the given ID, as a single Log object.

4.4 DELETE /api/logs/{id}

Deletes the log with the given id, if it is not active.
If the log was correctly deleted, the response is a NoError.

4.5 DELETE /api/logs/

Deletes all logs currently present which are not active.
If all non-active logs were correctly deleted, or no non-active log is present, the response is a NoError.

4.6 GET /api/logs/{id}/statistics

Obtains the list of statistics for the log with the given id, as an array of Statistics objects.

47 GET /api/logs/{id}/statistics/last

Obtains the last statistics for the log with the given id, as a single Statistics object.

4.8 POST /api/logs/{id}/reset

Resets all statistics counters for the log with the given id.
If the reset was correctly executed, the response is a NoError.

4.9 GET /api/logs/{id}/export

Exports the log data in csv formatted file.

n

12

4.10 Data structures

4.10.1 Log
Schema
{
”id”: Integer,
"start”: DateTime,
”active”: Boolean,
”configuration”: EmulationProfile

Description of fields
- id
ID of log.

- start

DateTime when the log started.

- active

True if the log is currently active.

- configuration

Snapshot of the EmulationProfile that is logged by this log.

4.10.2 Statistics

Schema

{
"time”: Integer,
"producer1”: StatisticsStructure,
"producer2”: StatisticsStructure,
”consumer1”: StatisticsStructure,
”consumer2”: StatisticsStructure

3

Description of fields

- time

Chapter 4. Emulation Logs

Time in seconds passed from log start when these statistics were sampled.

+ producerl

StatisticsStructure for produceri.

- producer?

StatisticsStructure for producer2.

« consumer1

StatisticsStructure for consumeri.

« consumer?2

StatisticsStructure for consumer2.

4.10. Data structures

4.10.3 StatisticsStructure

Schema

{
"packets”: Integer,
"bytes”: Integer,
”dropPackets”: Integer,
”dropBytes”: Integer,
”reorderedPackets”: Integer,
"reorderedBytes”: Integer,

}

Description of fields

- packets
Total number of packets processed.

- bytes
Total number of bytes processed.

- dropPackets
Total number of packets dropped.

- dropBytes
Total number of bytes dropped.

- reorderedPackets
Total number of packets reordered.

+ reorderedBytes
Total number of bytes reordered.

Chapter 5

Scripting Example

Being a HTTP interface, the AP| can be used from any language that can send/receive HTTP messages.
In this chapter we provide an example of this, using Python 3.

The following example script authenticates into the device, lists the emulation profiles configured,
picks one and runs it. The emulation is then edited while running, and after some time it is stopped.
After the script has run, emulation data will be available to be visualized using the WanRaptor GUI, or
processed with custom solutions based on the Emulation Logs APIs.

import requests
import json
import time

This is the base url on which the GUI is reachable
baseUrl = ”http://192.168.1.100:8080”

headers = {'content-type': 'application/json'}

Request for login
loginCredentials = {'username': 'admin', 'password': 'WanRaptor'}

r = requests.post(
url = baseUrl + ”/api/login”,
data = json.dumps(loginCredentials),
headers=headers)

if r.status_code == 200:
resp = json.loads(r.text)

Save data from the login response
token_type = resp['token_type']
access_token = resp['access_token']
refresh_token = resp['refresh_token']

Add Authorization header
headers['Authorization'] = token_type + ” ” + access_token

Request for list of emulation profile ids
r = requests.get(
url = baseUrl + ”/api/emulations”,
headers = headers)

if r.status_code == 200:
ids = json.loads(r.text)
print(ids)

For following commands, suppose we select a specific emulation ID out of the list
id = 6

Request for given emulation profile

r = requests.get(
url = baseUrl + ”/api/emulations/” + id,
headers = headers)

15

16 Chapter 5. Scripting Example

if r.status_code == 200:
profile = json.loads(r.text)
print(profile)

Request to start an emulation profile

r = requests.post(
url = baseUrl + ”/api/emulations/” + id + ”/start”,
headers = headers)

resp = json.loads(r.text)
print(resp)

The emulation is now running
time.sleep(5)

You can change any property of the emulation profile, like you would on the GUI
You can edit both when the emulation is stopped and when is running
profile['delays']['port1']['constant'] = 25

r = requests.put(
url = baseUrl + ”/api/emulations/” + id + ”edit”,
headers = headers,
data = json.dumps(profile))

resp = json.loads(r.text)
print(resp)

Suppose half an hour has passed, it is good practice to refresh tokens early

According to OAuth 2.0 specification, this request must be in x-www-form-urlencoded format
refreshCredentials = 'grant_type=refresh_token&refresh_token="' + refresh_token

r = requests.post(
url = baseUrl + ”/oauth/access_token”,
data = refreshCredentials,
headers = {'content-type': 'application/x-www-form-urlencoded'})

if r.status_code == 200:
resp = json.loads(r.text)

Update tokens from the refresh response
token_type = resp['token_type']
access_token = resp['access_token']
refresh_token = resp['refresh_token']

Update Authorization header
headers['Authorization'] = token_type + ” ” + access_token

The emulation is still running
time.sleep(5)

Request to stop an emulation profile

r = requests.post(
url = baseUrl + ”/api/emulations/” + id + ”/stop”,
headers = headers)

resp = json.loads(r.text)
print(resp)

The emulation is now stopped, and the script concludes.
Emulation data is available on the GUI or through /api/logs/ endpoints

	Contents
	Introduction
	Endpoints
	Design Principles
	Data Structures
	Response Structure

	Authentication
	 POST /api/login
	 POST /oauth/accesstoken

	Emulation Profiles
	 GET /api/emulations/
	 GET /api/emulations/{id}
	 POST /api/emulations/
	 PUT /api/emulations/{id}
	 DELETE /api/emulations/{id}
	 DELETE /api/emulations/
	 POST /api/emulations/{id}/start
	 POST /api/emulations/{id}/stop
	Data structures
	 EmulationProfile
	 ScheduleSettings
	 DateTime
	 Delay
	 LossRate
	 Bandwidth
	 Reordering
	Example EmulationProfile

	Emulation Logs
	 GET /api/logs
	 GET /api/logs/active
	 GET /api/logs/{id}
	 DELETE /api/logs/{id}
	 DELETE /api/logs/
	 GET /api/logs/{id}/statistics
	 GET /api/logs/{id}/statistics/last
	 POST /api/logs/{id}/reset
	 GET /api/logs/{id}/export
	Data structures
	 Log
	 Statistics
	 StatisticsStructure

	Scripting Example

